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EXCUTIVE SUMMARY  
 

Lung cancer is one of the most common cancers in the world which will continue 

rising to reach a high rate of death in the year 2030. The two main types are small cell 

lung cancer and non-small cell lung cancer. The information of genetics mechanism 

on how genes or protein cause cancer is widely studied nowadays. The development 

of lung cancer is a multi-gene and extremely complex process that involves several 

biological processes such as oncogene activation, tumor suppressor gene mutation and 

tumor cell apoptosis suppression. The cancer diagnostics development relies on the 

understanding of cancer mechanisms; therefore, to identify novel cancer associated 

protein is an essential first step in cancer research development. 

In this study, we identified the novel lung cancer associated proteins based on two 

different concepts of network clustering approach for discovering protein interaction 

dense regions (network motif). Firstly, K-Means clustering approach is adopted to 

cluster a group of protein-protein interaction into sub-clusters, and then clique 

percolation clustering method (CPM) is adopted to discover ñsignificant network 

motifò of significant protein cluster resulted by K-Means. Secondly, the Molecular 

Complex Detection approach (MCODE) is also adopted in this work to be a candidate 

of the first algorithm in term of clustering efficiency. Then analyzing biological 

processes and KEGG pathways of proteins involved in same cluster was investigated. 

Besides, cancer protein types; tumor suppressor protein (TSP) and onco-protein 

(OCP) are also observed. Finally, the comparison of discovering accurate ñprotein 

complexesò among two different approaches is investigated by referring to known 

protein complexes from MIPS.  

Our results indicated that associated proteins findings involved in crucial processes in 

cancer formation i.e. programmed cell death, apoptosis. Basically, there are two 

limitations of our methodology i) the cancer-associated protein prediction is limited 

by the quality of gene ontology and pathway information, and ii) limited by the 

number of known lung cancer proteins. This work can be the essential first step on 

discovering lung cancer associated proteins based on clustering analysis.  

Further study will make more experiments in using different clustering algorithm to 

overcome trapping the result in increasing accuracy and precision of the prediction of 

lung cancer associated protein. 
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ABSTRACT  

 

Discovering cancer-associated proteins is a major challenge in cancer research. 

Recently various techniques have been developed to identify novel cancer-associated 

proteins. Protein-protein interaction network and also protein clustering approaches 

are good predictors for cancer proteins. In this study, we implemented two different 

network clustering approaches on lung cancer protein-protein interaction network in 

order to identify novel lung cancer-associated proteins. Firstly, we adopted K-Means 

clustering technique to identify novel lung cancer associated proteins, and secondly, 

the Molecular Complex Detection approach (MCODE) was applied in this research 

work to detect significant proteins which related to lung cancer formation. 

Enriched biological functions and KEGG pathways are determined, and results 

strongly suggest that most of predicted proteins involve in lung cancer formation. 

Also, based on the assumption that cancer proteins tend to interact with cancer 

proteins, we have identified several putative lung cancer proteins. It is expected that 

the approach developed in this work should be of value for identifying cancer-

associated and cancer proteins. 
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CHAPTER 1  

INTRODUCTION  

1.1 Lung Cancer 
Lung cancer is one of the most common cancers in the world. The World Health 

Organizationôs Global Burden of Disease analyses 1,676,000 deaths from lung cancer 

worldwide in 2015. It predicts that this toll will continue to rise to reach a staggering 

2,279,000 deaths in the year 2030 (World Health Organization Web site). 

Lung cancer forms in tissues of the lung, usually in the cells lining air passages which 

are leading cause of cancer death in human. Cigarette smoking causes most lung 

cancers. Common symptoms of lung cancer include a cough that doesnôt go away and 

gets worse over time, constant chest pain, coughing up blood, shortness of breath, 

wheezing, or hoarseness, repeated problems with pneumonia or bronchitis, loss of 

appetite or weight loss and fatigue. Lung cancer is the leading cause of cancer deaths 

because 84% of cases are diagnosed at an advanced stage, with a five-year survival 

rate of less than 15% (Okada M. 2005; Jemal A. 2008; Kassis ES. 2009). The two 

main types are small cell lung cancer and non-small cell lung cancer. Treatment 

depends on the types, stage, and how advanced it is. Treatments include surgery, 

chemotherapy, radiation therapy, and targeted therapy (NIH: National Cancer 

Institute).  

1.2 Genetic Mechanism related Cancer 
The information of genetic mechanisms on how genes cause cancer is widely studied 

nowadays. Genes come in pairs and work together to make a protein product. Proteins 

are very important molecules in living cells. They are involved in virtually all cell 

functions. Each protein has a specific role such as some proteins are involved in body 

movement, defense against germs, while others are involved in structural support. 

Protein are constructed from a set of twenty of amino acids, each amino acid has 

different three-dimensional shapes. There are many types of proteins and their 

functions; antibodies defend that body from germs, enzymes speed up chemical 

reactions and contractile proteins are responsible for movement. 

When genes have error in their DNA code which is said to be ñalteredò, they may not 

work properly in making protein that work in specific function in human body. An 

accumulation of many mutations in gene can lead to the development of cancer. The 

occurrence and development of lung cancer is a multi-gene, multi-stage, and 

extremely complex process that involves several changes, including oncogene 

activation, tumor suppressor gene mutation and deletion, tumor cell apoptosis 

suppression, and microsatellite instability(Plebani M. 1995; Vielhaber S. 2006; Beane 

J. 2007). 

1.3 Protein-Protein Interaction 
Protein combinations are likely same as instrumental in the pathogenesis of human 

disease, for instance the defect in fusion of Bcr and Abl can leads to chronic 

myelogenous leukemia (Ren R. 2005) or the abnormal interactions acquired by the 

huntington protein in Huntingtonôs Disease (Li SH. 2004). 

The protein function can be expressed in terms of its interactions with other 

molecules. The cancer diagnostics development relies on the understanding of cancer 
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mechanisms; therefore, to identify novel cancer associated protein is an essential first 

step in cancer research development. There are two types of cancer protein which are 

Onco-Protein (OCP) and Tumor Suppressor Protein (TSP). OCP is the good protein 

that normally controls cell growth and it divides. If OCP mutates, it becomes a bad 

protein that can makes cell grows out of control, which can lead to cancer. TSP is 

normal protein that slow down cell division and control apoptosis or programmed cell 

death, cells can grow out of control which can also lead to cancer if TSP works not 

properly. 

Currently, there are various methods have been developed to accelerate cancer protein 

discovery i.e. gene annotation and sequence based (Perez-Iratzeta C. 2002; Turner 

F.S. 2003), microarray expression data (de-Lichtenberg U. 2005), structural 

information (Zhang QC. 2012), domain composition (Xia K. 2008; Peng W. 2014), 

and network analysis based (George R.A. 2006; Lage K. 2006) which is generally 

connect gene networks with phenotype networks to infer gene-cancer relationships.  

Many biological functions involve the formation of protein-protein complexes. 

Protein interactions appear to form a molecular network which usually contains small 

circuit patterns called ñnetwork motifsò which are known to have interesting 

dynamical properties. Motifs reveal the cores of functional modules in molecular 

networks. The dynamic modules or sub-networks of proteins may have leading roles 

in the cancer development and metastasis process. The static modules of protein may 

belong to the inherent components in a protein-protein interaction network; these 

modules tend to associate with the ñnoisesò of protein expression, genetic 

modification, and genetic evolution. The static modules of proteins may be a buffer in 

the variation of the protein-protein interaction network, and cells having these 

proteins are robust (Tang X. 2011). 

1.4 Contribution of This Research Work 
Discovering the relationship of proteins in protein-protein interaction network has 

been one of the major challenges in today era. In this study, we further explore 

proteins relationship, focusing on lung cancer protein in particular. The protein-

protein interaction network was investigated in order to imply involvement of proteins 

in lung cancer. We aim to predict a novel set of lung cancer associated proteins based 

on various clustering techniques. 

In this research, the novel lung cancer associated proteins are predicted based on 

various networking approaches to discover network motif or cluster which reveals the 

cores of functional modules in molecular networks. Proteins which appear in the same 

cluster are likely to have similar molecular functions. Therefore, we hypothesized that 

the proteins found in same cluster as lung cancer proteins might have a high 

probability in forming lung cancer as well.  

Initially, we apply K-Means clustering approach to cluster a group of protein-protein 

interaction into sub-clusters, and then analyze the biological functions of proteins 

involved in same cluster and also their KEEG pathways (Kyoto Encyclopedia of 

Genes and Genomes: http://www.genome.jp/kegg/). KEGG pathways service is a 

database resource for understanding high-level functions and utilities of the biological 

system are observed. Besides, clique percolation clustering method (CPM) is adopted 

to discover ñsignificant network motifò of clusters resulted by K-Means. The clique 

http://www.genome.jp/kegg/
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motifs will help in revealing the significant proteins which involve in the core 

functional modules related to lung cancer. Furthermore, cancer protein types; tumor 

suppressor protein (TSP) and onco-protein (OCP) are also observed in this study. 

Secondly, the Molecular Complex Detection approach (MCODE) is also adopted in 

this work to be a candidate of the first algorithm in term of clustering efficiency. The 

same input data set as K-Mean algorithm is submitted into MCODE algorithm to 

cluster protein-protein interaction network into sub-clusters. Then analyzing 

biological processes and KEGG pathways of proteins involved in same cluster was 

investigated. Besides, cancer protein types; tumor suppressor protein (TSP) and onco-

protein (OCP) are also observed. 

The comparison of discovering accurate ñprotein complexesò among K-Mean and 

MCODE algorithm is investigated by referring to known protein complexes from The 

MIPS Mammalian Protein-Protein Interaction Database (MIPS) (Pagel P. 2005). The 

web pages displaying the significant protein modules found from these two 

approaches are created. The web service is freely accessible at 

http://sit.mfu.ac.th/lungcancerproj/ 
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CHAPTER 2  

LITERATURE REVIEW S 
 
Protein-Protein Interaction (PPI) plays a crucial role in determining the outcome of 

cellular processes. Protein networks have been used to further the study of molecular 

evolution, robustness of cells to perturbation and for discovery of new protein 

functions. The accuracy of interacting protein identification and their networks is 

important for obvious understanding the molecular mechanism within the cell. Many 

complex systems in nature can be described in terms of networks which makes the 

tangle connections among the units to be understandable.  A key question is how to 

interpret the networks or sub-network (community) associated with more highly 

interconnected parts. 

Interaction maps of entire genomes are useful for improving the understanding of 

cellular function. There are various attributes to be used in mapping network i.e. 

microarray expression data (de-Lichtenberg U. 2005), gene ontology (Mukhopadhyay 

A. 2012), structural information (Zhang QC. 2012) and domain composition (Xia K. 

2008; Peng W. 2014). 

Furthermore, several computational methods have been developed to evaluate and 

predict PPI, such as mRNA-co expression based on the assumption that proteins that 

are co-expressed are more likely to interact in comparison to proteins that are not co-

expressed (Browne F. 2010). The Gene Ontology (GO) annotation (Wu X. 2006) 

implies that proteins found within the same biological process are more likely to 

interact than proteins from a different biological process. The Interolog approach 

involves PPI transferring from one organism to another using comparative genomics 

(Jansen R. 2003). With the protein domain interaction approach (Ng S.K. 2003), PPI 

could be inferred by recognizing protein domains and the interaction transfers by 

known domain-domain interactions (DDI). Also, it was proposed that PPI can be 

inferred from protein structural information (Ogmen U. 2005). Among those 

computational techniques, the interolog approach has been broadly used for PPI 

prediction (Von-Mering C. 2007). Also, the interolog approach has been justified to 

be reliable on exploring interaction sub-networks in cancer (Rhodes D.R. 2005). 

Even though there are nowadays many techniques or methodologies help in capturing 

the role of molecular functions but the main drawback is that result datasets are often 

incomplete which cause  high rate of false positive and false negative events (Satuluri 

V. 2010). The computational methods which are based on graph-based approaches are 

introduced such as Cfinder (Adamcsek B. 2006), Clique (Spinrin V. 2005), jClust 

(Pavlopoulos GA. 2009), MCODE (bader GD. 2003), SCAN (Mete M. 2008), PCP 

(Chua HN. 2008), LCMA (Li XL. 2005), DPClust (Alfaf -UI-Amin M. 2006), CMC 

(Liu G. 2009) and GIBA (Moschopoulos CN. 2009). These algorithms used graph 

theory to identify highly connected sub-networks. Otherwise, DMSP (maraziotis IA. 

2007), GFA (Feng J. 2008) and MTISSE (Ulitsky I. 2007) are the methods to predict 

protein complex based on gene expression data, whereas others like STM (Cho YR. 

2007), SWEMODE (Lubovac Z. 2006) and DECAFF (Li XL. 2007)adopt graph 

annotation information to make a prediction. 

Adamcsek et al (Adamcsek B. 2006)developed an efficient tool names ñCfinderò for 

finding and visualizing the overlap, dense of node groups in undirected graphs. This 
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program can be used in discovery novel modules of protein associated network based 

on Clique Percolation Method (Palla G. 2005). 

jClust (Pavlopoulos GA. 2009) an application that provides access to a widely used 

set of clustering algorithms and allows the interactive visualization of data. This 

toolbox supports a various supervised and unsupervised clustering analysis methods 

i.e. k-Means (MacQueen J.B. 1967), Spectral clustering (Paccanaro A. 2006), Affinity 

propagation (Frey BJ. 2007), Restricted neighborhood search cluster algorithms- 

RNSC (King AD. 2004), Markov clustering-MCL (Enright AJ. 2002) and MULIC 

(Andreopoulos B. 2007).  

GIBA (Moschopoulos CN. 2009) is a clustering tool which implements various 

methods i.e. MCL, RNSC , Cluster Density, haircut operation, best neighbor, and 

cutting edge method. 

Spinrin et al (Spinrin V. 2005) studied protein complexes in molecular networks. 

They presented molecular networks on the meso-scale level which focused on 

multibody interactions and discovered sets of proteins that have many interacting 

proteins among themselves. They analyzed a yeast PPI network, then analyzed 

functional annotation of these sub-networks and found that most of identified sub-

networks correspond to either of the two types of cellular modules which are protein 

complexes or functional modules. Their work discovered highly connected clusters of 

proteins in a network of protein interactions and also the findings strongly support the 

suggested modular architecture of biological networks. 

Bader and Hogue (bader GD. 2003) developed an automated method for discovering 

molecular complexes in large protein interaction networks names ñMolecular 

Complex Detection (MCODE)ò. This method is based on vertex weighting by local 

neighborhood density and outward traversal from a locally dense seed protein to 

isolate the dense regions. 

Structural Clustering Algorithm for Network (SCAN)  is a new method for finding 

clusters or functional modules in complex network which was developed by Mete M. 

et al (Mete M. 2008). Their work adopted the budding yeast PPI for evaluating the 

effective of their algorithm. This method is based on common neighbors. Two 

vertices are assigned to a cluster according to how they share neighbors. 

Chua et al (Chua HN. 2008) studied the indirect protein interactions between level-2 

interaction. They proposed a method in both direct and indirect interactions and first 

weighted using topological weight to estimate the strength of functional association. 

Furthermore, they also proposed an algorithm for searching cliques in the modified 

network, and merge cliques to form clusters using a "partial clique merging" method. 

The findings from this work are i) indirect interactions and topological weight to 

augment protein-protein interactions improve the precision of clusters predicted by 

various clustering algorithms; and ii ) this algorithm performs very well on interaction 

networks modified in this way. 

 

The work of Li et al (Li XL. 2005) purposed algorithm to identify interaction graph 

using local clique merging. This algorithm aims to locate local cliques for each graph 

member (protein) and then merge the detected local cliques according to their affinity 

to form maximal dense regions. 

Liu et al (Liu G. 2009) developed an algorithm called ñClustering-based on maximal 

cliques (CMC)ò to find complexes from weighted PPI network. This algorithm 
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generates all the maximal cliques from the PPI networks, and then removes or merges 

highly overlapped clusters based on their interconnectivity. Their findings are (i) the 

iterative scoring method improve CMC performance (ii) the iterative scoring method 

reduce the impact of random noise on algorithm performance (iii) the iterative scoring 

method improve the performance of other protein complex prediction methods and 

reduce the impact of random noise on their performance; and (iv) this algorithm is an 

effective approach to protein complex prediction from protein interaction network. 

The work of Maraziotis et al (maraziotis IA. 2007) presents algorithm that discovers 

biologically functional modules of PPI by integrating of two pieces of information 

which are protein interaction and microarray data. This approach firstly assigns gene 

expression information as weights onto the PPI network. The enriched PPI graph is 

observed to see their topology. This algorithm aims to reveal the functional module of 

the weighted graph by expanding a kernel protein set which originates from a given 

seed protein. 

Feng et al (Feng J. 2008) purposed Graph Fragmentation Algorithm (GFA) for 

identifying protein complex. They combined PPI data and microarray gene expression 

profiles and then adapted a classical max-flow algorithm for discovering the densest 

sub-graphs (weight). This approach searches for large dense sub-graphs in a network 

of PPI, after that breaks each sub-graph into fragments iteratively by weighting its 

nodes in term of their corresponding log-fold changes in the microarray data until the 

fragment sub-graphs are sufficiently small. 

Ulitsky et al (Ulitsky I. 2007) purposed algorithm for identifying functional modules, 

firstly they computed pair-wise similarity of gene expression patterns from microarray 

data, then created a network of proteins and assigned similarity values between 

proteins in network, finally, search for sub-networks that reach high similarity. 

Cho et al (Cho YR. 2007) developed semantic similarity and semantic interactivity 

metrics based on Gene Ontology annotation to measure the reliability of the 

interaction of proteins. Weighted graph is created by assigning the reliability values to 

each interaction as a weight. 

SWEMODE (Lubovac Z. 2006) This work identify the core modules in protein 

interaction network by combining functional information with topological information 

of the network. The weight is used to represent the strengths of interactions between 

proteins, their semantic similarity is calculated which based on the Gene Ontology 

term of proteins. This algorithm can identifies dense sub-graphs containing 

functionally similarity proteins based on range of nodes; the highest ranked nodes are 

considered as seeds for candidate modules. 

DECAFF (Li XL. 2007) propose a method name ñDense-neighborhood Extraction 

using Connectivity and confidence Features (DECAFF)ò algorithm to discover dense 

sub-graphs of protein interaction networks. Their experiment result with yeast protein 

interaction data indicates that pair-wise protein interaction networks can be effectively 

discovered new protein complexes. 

2.1 Protein-Protein Interaction Network in Diseases Research 
Wachi (Wachi S. 2005) studied differentially expressed genes in lung cancer tissues 

by observing the degree of distribution and centrality of the set of differentially 

expressed genes in human PPI network based on interolog approach (Matthews LR. 

2001). Their result supports the notion that topological analysis cancer genes using 
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protein interaction data may provide the rationales for therapeutic targets in cancer 

treatments. 

The work of Jonsson and Bates (Jonsson PF. 2006) states that the network topology of 

human proteins translated from known cancer genes is different from the network 

topology of  undocumented proteins as being mutated in cancer. Their work also 

indicates that cancer proteins tend to target in central hub proteins rather than 

peripheral proteins, furthermore they tended to reside in larger clusters and tended to 

participate in more clusters than undefined-cancer proteins. These evidences also 

support the work of Goh et al (Goh KI. 2007) that disease genes are likely to encode 

hub proteins; play a central role in the human interactome and are expressed widely in 

most tissues. 

Besides, Chuang et al (Chuang HY. 2007) used protein network based approach to 

identify breast cancer metastasis. A human PPI network was created from metastatic 

and nonmetastatic patientsô information. They found sub-network markers were more 

than single marker genes. 

Efroni et al (Efroni S. 2007) performed a related study, in which they predicted 

pathways associated with cancer gene expression data sets. The expression data were 

adopted in being score of the interaction of known pathways and the scores were used 

as features for make prediction. Their work different with Chuang et al (Chuang HY. 

2007) in which they adopted known pathways in prediction rather than sub-networks 

dynamically picked up from a protein network. 

Furthermore, the work of Li et al (Li BQ. 2012) studied in identifying colorectal 

cancer related gene. Their work combined two computational methods to identify 

colorectal cancer-related genes which based on i) the gene expression profiles and ii) 

the shortest path analysis of functional protein association networks. They found that 

the genes identified from both methods have more cancer genes than the genes 

identified from the gene expression profiles alone, and this group of genes had greater 

functional similarity with the reported colorectal cancer genes than another group of 

genes. 

In addition, Feizi and Bordel (Feizi A. 2013) also studied sub-networks of metabolic 

and protein interaction which controlling the growth rate of cancer cells. They 

analyzed gene expression profiles of 60 different cell lines using several genome-

scale biological networks and new algorithms. Their findings are over 100 growth-

correlated metabolic sub-networks have been identified which are a key role of 

simultaneous lipid synthesis and degradation in the energy supply of cancer cells 

growth. 

The previous research works mentioned above clearly proved that proteins close to 

one another in a network cause similar diseases. This idea is becoming an 

interestingly and increasingly important factor in discovery of disease genes. Various 

approaches to be implemented in order to identify essential proteins, different 

approaches adopt different kind of data, but all of them involve known disease genes 

(proteins) and also candidate genes (proteins). The new approaches that do not depend 

on prior knowledge of disease genes (proteins) are needed to discovery novel disease 

related genes (proteins). 
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2.2 K-Means Clustering 
K-means (Tapas K. 2002) is one of unsupervised learning algorithms that solve 

clustering problem. The procedure follows a simple and easy way to classify a given 

data set through a certain number of clusters (assume k clusters) fixed apriori. The 

main idea is to define k centers, one for each cluster. These centers should be placed 

in a cunning way because of different location causes different result. So, the better 

choice is to place them as much as possible far away from each other. The next step is 

to take each point belonging to a given data set and associate it to the nearest center. 

When no point is pending, the first step is completed and an early group age is done. 

At this point we need to re-calculate k new centroids as barycenter of the clusters 

resulting from the previous step. After we have these k new centroids, a new binding 

has to be done between the same data set points and the nearest new center. A loop 

has been generated. As a result of  this loop we  may  notice that the k centers change 

their location step by step until no more changes  are done or  in  other words centers 

do not move any more. Finally, this algorithm aims at minimizing an objective 

function knows as squared error function given by:   

 
where, ||xi - vj|| is the Euclidean distance between xi and vj, ci is the number of data 

points in its cluster, c is the number of cluster centers. 

Steps for K-Means clustering 

Let  X = {x1,x2,x3,éé..,xn} be the set of data points and V = {v1,v2,éé.,vc} be 

the set of centers. 

1) Randomly select ócô cluster centers. 

2) Calculate the distance between each data point and cluster centers. 

3) Assign the data point to the cluster center whose distance from the cluster 

center is minimum of all the cluster centers. 

4) Recalculate the new cluster center using:   

   
where,  ci represents the number of data points in i cluster. 

5) Recalculate the distance between each data point and new obtained cluster 

centers. 

6) If no data point was reassigned then stop, otherwise repeat from step 3). 

2.3 Clique Percolation Method (CPM) 
The clique Percolation Method (CPM) is one of the earliest overlapping communities 

finding methods widely used in several different networks based on the concept of 

mapping the connections among unit into a graph. The idea of representing a complex 

system with a network is frequently used in various fields including investigations on 

mobile phone networks (Onnela J.P. 2007; Lambiotte R. 2008; Seshadri M. 2008), e-

mail networks(Ebel H. 2002) online social networks (Aiello L.M. 2010) and also 

including biology, economy, etc. 

Clique percolation clustering is a well known approach for analyzing the overlapping 

community structure of networks. This method builds up the communities from k-

cliques which is fully connected sub graphs of k nodes. Any two k-cliques are 
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adjacent if they share k-1 common nodes. A k-clique community is constructed by 

merging all possible adjacent k-cliques. The main advantage of this approach is that it 

allows overlaps between the communities, as a given node can be a member of 

several clusters at the same time. This characteristic can be applied to discover 

significant proteins that involve in more than one community. 

 
Figure 1 Illustration of the k-clique communities at k = ƚ. 

In protein interaction networks, completely connected graphs, so-called cliques, have 

been found to have a high functional significance (Spirin V. 2003; Yeger-Lotem E. 

2004). Motifs and cliques reveal the cores of functional modules in molecular 

networks. In this study, the lung cancer associated genes are predicted based on a 

clique percolation clustering approach to discover network motif or cluster which 

reveals the cores of functional modules in molecular networks. Proteins which appear 

in the same cluster are likely to have similar molecular functions. Therefore, we 

hypothesized that the proteins located in the same cluster as lung cancer proteins have 

a high probability in forming lung cancer as well. 

Directed Clique Percolation Method (CPMd): The k nodes can be ordered such that 

between an arbitrary pair of them there exists a directed link pointing from the node 

with the higher rank towards the node with the lower rank. The directed Clique 

Percolation Method defines directed network communities as the percolation clusters 

of directed k-cliques. 

2.4 MCODE (Molecular Complex Detection) 
 

MCODE algorithm (bader GD. 2003) is a well-known automated method to find 

highly interconnected sub-graphs as molecular complexes or clusters in large protein-

protein interaction networks. This algorithm detects densely connected regions in 

protein-protein interaction networks as protein complexes. Firstly, it weights every 

vertex based on their local neighborhood densities, and then selects seed vertices that 

high weights and then outward traversal (Depth-First-Search) from a dense seed 

protein with a high weighting value to include neighboring vertices whose weight 

satisfied some given threshold. The MCODE algorithm operates in three stages, 

http://en.wikipedia.org/wiki/Molecular_complex
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vertex weighting, complex prediction and optionally post-processing to filter or add 

proteins in the resulting complexes by certain connectivity criteria. 

The first stage of MCODE, vertex weighting, weights all vertices based on their local 

network density using the highest k-core of the vertex neighborhood. A k-core is a 

graph of minimal degree k (graph G, for all v in G, deg(v) >= k). The highest k-core of 

a graph is the central most densely connected subgraph. We define here the term core-

clustering coefficient of a vertex, v, to be the density of the highest k-core of the 

immediate neighborhood of v (vertices connected directly to v) including v (note that 

Ci does not includev). The core-clustering coefficient is used here instead of the 

clustering coefficient because it amplifies the weighting of heavily interconnected 

graph regions while removing the many less connected vertices that are usually part 

of a biomolecular interaction network, known to be scale-free. A scale-free network 

has a vertex connectivity distribution that follows a power law, with relatively few 

highly connected vertices (high degree) and many vertices having a low degree. A 

given highly connected vertex,v, in a dense region of a graph may be connected to 

many vertices of degree one (singly linked vertex). These low degree vertices do not 

interconnect within the neighborhood of v and thus would reduce the clustering 

coefficient, but not the core-clustering coefficient. The final weight given to a vertex 

is the product of the vertex core-clustering coefficient and the highest k-core 

level, kmax, of the immediate neighborhood of the vertex. This weighting scheme 

further boosts the weight of densely connected vertices. This specific weighting 

function is based on local network density. Many other functions are possible and 

some may have better performance for this algorithm but these are not evaluated here. 

The second stage, molecular complex prediction, takes as input the vertex weighted 

graph, seeds a complex with the highest weighted vertex and recursively moves 

outward from the seed vertex, including vertices in the complex whose weight is 

above a given threshold, which is a given percentage away from the weight of the 

seed vertex. This is the vertex weight percentage (VWP) parameter. If a vertex is 

included, its neighbours are recursively checked in the same manner to see if they are 

part of the complex. A vertex is not checked more than once, since complexes cannot 

overlap in this stage of the algorithm. This process stops once no more vertices can be 

added to the complex based on the given threshold and is repeated for the next highest 

unseen weighted vertex in the network. In this way, the densest regions of the network 

are identified. The vertex weight threshold parameter defines the density of the 

resulting complex. A threshold that is closer to the weight of the seed vertex identifies 

a smaller, denser network region around the seed vertex. 

The third stage is post-processing. Complexes are filtered if they do not contain at 

least a 2-core (graph of minimum degree 2). The algorithm may be run with the 'fluff' 

option, which increases the size of the complex according to a given 'fluff' parameter 

between 0.0 and 1.0. For every vertex in the complex, v, its neighbors are added to the 

complex if they have not yet been seen and if the neighborhood density (including v) 

is higher than the given fluff parameter. Vertices that are added by the fluff parameter 
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are not marked as seen, so there can be overlap among predicted complexes with the 

fluff parameter set. If the algorithm is run using the 'haircut' option, the resulting 

complexes are 2-cored, thereby removing the vertices that are singly connected to the 

core complex. If both options are specified, fluff is run first, then haircut. 

Resulting complexes from the algorithm are scored and ranked. The complex score is 

defined as the product of the complex subgraph, C = (V,E), density and the number of 

vertices in the complex subgraph (DC × |V|). This ranks larger more dense complexes 

higher in the results. 

There are two important parameters of MCODE which are node score cutoff and fluff. 

Node score cutoff is used to control how new nodes are added to a module. The 

default value is set to 0.2, which means the new node score must be at least eighty 

percent that of the modules seed node score. A setting of 0.1 makes it harder for new 

nodes to join a module, therefore, creating smaller modules. Once a module is found, 

fluff parameter is set for adding nodes that have a node score of fifty percent of the 

original seed node score, and can be used to grow the module. The node score cutoff 

is the most important parameter for deciding one the module shape and size. The 

higher value of the node score cutoff, coupled with adding fluff parameter would be 

good to identify the pathway interacting modules. Since many proteins need only 

interact with just one member of a complex to phosphorylate its target. 

Figure 2 shows the effect of adding Fluff to a module, the left module was defined 

from the human interactome using a node score threshold of 0.2. The right module is 

the same seed module, after applying fluff setting to 0.5, where the white nodes have 

been added. In general, the fluff nodes are connected to the seed module via a single 

edge. Figure 3 shows the effect of lowering the node score threshold from 0.2 to 0.1. 

The central module was defined from the human interactome using a node score 

threshold of 0.2. From this network, four tighter, more coherent sub-networks were 

identified when running MCODE with node score threshold is 0.2. 



 

12 
 

 

Figure 2 The effect of adding Fluff to a module 
 

 
Figure 3 the effect of lowering node score ratio from 0.2 to 0.1 
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CHAPTER 3 

METHODOLOGY  

3.1 Data Source 
A collection of experimentally confirmed lung cancer proteins was obtained from two 

resources i.e. Online Mendelian Inheritance in Man (OMIM: 

http://www.ncbi.nlm.nih.gov/omim) and Lung Cancer Database (Wang L. 2010) 

(HlungDB: (http://www.megabionet.org/bio/hlung/index.jsp).  A total of 

experimentally confirmed human PPIs was obtained from BioGrid (Database of 

protein and genetic interactions: http://www.thebiogrid.org) (Stark C. 2005). The 

Onco-Protein (OCP) and Tumor Suppressor Protein (TSP) data are derived from the 

following three databases: (1) Tumor Associated Gene database of Taiwan national 

Cheng Kung University (http://www.binfo.ncku.edu.tw/TAG/), (2) Memorial Sloan-

Kettering Cancer Center and (3) National Yang Ming University. This research 

collected 656 OCP and 1,024 TSP. 

3.2 Research Overview System Flowchart 

 

 
Figure 4 System Flowchart 

http://www.megabionet.org/bio/hlung/index.jsp
http://www.thebiogrid.org/
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As a guideline of describing the methodology section, a brief content summarizing 

each of the following steps is given. A flowchart depicting a methodology structure is 

presented in figure 4. 

1. Verification and Pre-Processing of Input Data 

2. Construct a set of lung cancer protein-protein interaction 

3. K-Means Clustering Process 

4. MCODE Clustering Process 

5. Identification of Protein Complex 

6. Gene Set Enrichment Analysis (GSEA) 

7. Identification of cancer-related proteins 

3.3 Verification and Pre-Processing of Input Data 
A set of lung cancer proteins (2,683 proteins) was extracted from two different 

sources which are OMIM and HLungDB, besides, a set of 159,840 homo-sapiens 

protein-protein interactomes was gathered from another BioGrid. Before clustering 

processes, we verified a set of lung cancer proteins whether each identified lung 

cancer protein was proved by at least two literature references. We focused in this 

process to make sure that our initial input data set is reliable by literature search and 

credible by specialists. This process is able to protect garbage in garbage out problem. 

3.4 Construct a set of lung cancer protein-protein interaction 
Lung cancer proteins were merged with their protein interacting partners from 

bioGrid, and then a set of 76,360 lung cancer protein-protein interactions was 

obtained. Figure5 shows how to merge lung cancer proteins with their interacting 

partners. 

 

 
Figure 5 Lung Cancer protein are merged with their interacting partners 
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3.5 K-means Clustering Process 
 

 
Figure 6 K-MEANs Flowchart 

 
1) Construct Lung PPI Metric; to call K-means algorithm of MATLAB  needs to 

re-format PPI input data in a metric format. Java programming language was 

adopted to create the PPIs metric. The metric of 9,284 in size was obtained 

from the JAVA programming script. Figure 7 shows the original file format of 

Lung cancer PPI data composing of protein A which interacts to protein B. 

Figure 8 indicates the metric format of PPI data. Zero (0) represents non-

binding between two proteins in such row and column, one (1) represents such 

pair of protein interact to each other. 

 
Figure 7 the original file format of protein-protein interaction data 
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Figure 8 the metric file format of protein-protein interaction data 

 
2) Run K-Means algorithm; K-Means algorithm was adopted for 

clustering Lung cancer PPI into sub-clusters, measurement for 

clustering is set to correlation distance. We set distance 

measurement to be ñcorrelationò which consist to the work of 

Goele Hollanders (Hollanders 2005). This work did an experiment 

on comparison of clustering performance of the K-means algorithm 

run with two different distance measurements which are squared 

Euclidean distance and correlation distance on microarray data of 

gene interaction. Their result indicates that the centroids obtained 

from the correlation distance give good indications of the different 

type of influences in a genetic regulatory system. This evidence 

support our goal in which we aimed to distinguish a set of proteins 

associated to lung cancer from other proteins. 

The value of K or the number of output sub-cluster was set to 25 

which is the maximum number of cluster based on our input data. 

We also further did an experiment to prove whether the correlation 

distance gives the best clustering performance on the assumption 

that balancing the number of member in each cluster which is 

indicating efficiency in clustering more than imbalance of such 

number. By doing this, the number of output cluster was fix to 10, 

then various types of distance method; city-block, Euclidian, 

correlation, hamming, and cosine were set for running on input 

data. To avoid bias, we run each method for ten times, and then 

take an average of the number of each cluster. From our evidence 

as table 1 indicates that correlation distance give the best variance 

value. 
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Table 1 Variation in the number of member in various methods 
method cluster 

1 
cluster 

2 
cluster 

3 
cluster 

4 
cluster 

5 
cluster 

6 
cluster 

7 
cluster 

8 
cluster 

9 
cluster 

10 
sum variance 

*10
-5
 

Cityblock 7256 1 89 1642 37 204 35 5 13 2 9284 46.78 

EU 6607 3 165 49 1091 1026 304 1 1 37 9284 37.40 
correlation 839 836 1520 836 622 803 814 862 734 1418 9284 0.77 

Hamming 7152 42 1 137 19 34 289 14 16 1580 9284 45.13 

Cosine 1934 1174 1311 412 173 716 1245 547 991 781 9284 2.37 

 
3) Filter out the output clusters which have the involvement of Lung cancer 

protein more than 50% of the proteins in a cluster. 

4) Find PPIs of proteins in each cluster; protein members in each cluster were 

merged with their protein interacting partners that present in same cluster. 

Ideally, proteins which are grouped in same cluster might not have the 

linkages to proteins in a cluster, some have the linkages, and some donôt have. 

Thus, to find significant set of protein-protein interaction in a cluster, we 

filtered out only the proteins that have their interacting partners present in 

same cluster. Figure 9 shows protein-protein interaction in same cluster. 

 
Figure 9 protein-protien interaction in same cluster 

(blue squres indicate proteins with their interacting partners, yellow squres indicate non interacting proteins) 

 
5) Find Clique community in result cluster; we adopted cFinder software to 

discover the community of protein in cluster. cFinder software applies the 

concept of Clique Percolation Clustering Method (CPM) to find dense region 

in a protein-protein interaction network. A set of PPI of each cluster was 

submitted to cFinder software to search for clique communities. 

6) Observe enriched biological process by DAVID; a list of protein of each 

cluster was submitted to DAVID  for identifying their enriched biological 

processes and also KEGG Pathways. 

7) Observe cancer protein types (tumor suppressor protein or onco-protein) 

involved in a cluster. 
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3.6 MCODE Clustering Process 
 

 
Figure 10 MCODE Flowchart 

 
1) Initially, a list of 76, 360 PPIs lung cancer protein-protein interaction was 

adopted in this calculation,  this data set was submitted to allegro-MCODE 

plugin of Cytoscape software (bader GD. 2003) to find highly interconnected 

regions or cluster in a network. 

2) Resulting complexes from MCODE are scored and ranked. The complex score 

of each cluster is the product of the complex subgraph, C= (V, E), density and 

the number of nodes in the complex sub-graph. Figure 11 shows list of clusters 

resulted by MCODE algorithm. 

 

 
Figure 11 cluster list resulted from MCODE algorithm 
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3) Clusters with their score greater than 1.5 was filter out to be determined in our 

experiment. 

4) Clusters with associated by greater than 50% of involving lung cancer proteins 

was filter out to be determined in our experiment. 

5) Enrichment biological process and KEGG pathway analysis by DAVID 

software was evaluated for protein-protein interaction in each cluster. By 

doing this, the experimentally confirmed protein partners of each protein in a 

cluster was mapped to their partners, then submitted all protein-protein 

interaction pairs of a cluster into DAVID to identify their enriched biological 

process and KEGG pathways with p-value set to 0.005. 

6) After we got a list of biological process or KEGG pathway of each cluster that 

satisfy 0.005 of p-value, only the biological processes or KEGG pathways that 

related to apoptosis, cell death, or any processes reported related to cancer 

were extracted to be determined in our experiment. 

7) Undefined lung cancer proteins in cluster were observed their linkage to 

cancer protein. 

8) For each biological process (or KEGG pathway), we observed protein type of 

involving proteins (tumor suppressor protein or onco-protein). 

3.7 Identification of Protein Complexes 
In this study, we compared the clustering results with known protein complexes 

obtained from The MIPS Mammalian Protein-Protein Interaction Database (MIPS) 

(Pagel P. 2005) which is a database of high-quality published experimental evidence 

of protein interaction data in mammals in order to identify realistic cancer-related 

protein modules. Subunits from k-community are compared with the MIPS protein 

complexes. The Jaccard Index (JI) is a quantity which is used to quantify the 

similarity between two sets, hence, given two modules A and B the JI is given by: 

||

||
),(

BA

BA
BAJI

Ç

Æ
=

 
 

where || BAÆ  and || BAÇ  denote the cardinality of || BAÆ  and || BAÇ  respectively. It 

is noted that JI lies between 0% and 100%. 

3.8 Gene Set Enrichment Analysis (GSEA) 
The functional annotation of the lung cancer PPIs is given by implementing The 

Database for Annotation, Visualization and Integrated Discovery, i.e. DAVID (huang 

W.da 2009). DAVID provides functional annotation tools which mainly provide 

typical batch annotation and gene ontology (GO) term enrichment analysis to 

highlight the most relevant GO terms associated with a given gene list. 

In order to investigate the enriched biological processes of proteins in clusters, the 

proteins of each cluster was submitted into DAVID, and then the tool clustered 

redundant annotation terms of the protein list. The proteins with an enriched 

biological processes e-value less than or equal to 0.05 of each were examined in this 

work. 
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3.9 Identification of cancer-related proteins 
The oncoprotein (OCP) and tumor suppressor protein (TSP) data are derived from the 

following three databases: (1) Tumor Associated Gene database of Taiwan national 

Cheng Kung University (http://www.binfo.ncku.edu.tw/TAG/), (2) Memorial Sloan-

Kettering Cancer Center and (3) National Yang Ming University.  
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CHAPTER 4 

RESULTS 

4.1 K-Means 
There are 25 output clusters from K-Means algorithm, but there is only one cluster 

that has lung cancer protein involved more than fifty percent. This cluster involves 

1,056 proteins in total, 983 proteins are lung cancer proteins (93% involvement of 

lung cancer protein). Therefore, we focused in this cluster for further study. 

 

4.1.1 Clique Percolation Clustering Network Analysis 
There are 18 clique communities from a K-Mean clustering process. A list of non-

Lung cancer protein involved those communities are UBC, COPS6, CUL2, NRP1, 

and SH3GL3. See detail in table2. 

UBC was recorded in uniProt that it involves in DNA damage response, by inducing 

the cell cycle regulator phosphoprotein p53 in response to the detection of DNA 

damage and resulting in the stopping or reduction of cell cycle rate. 

The work of Park et al (Park SW. 2009) indicates that somatic mutation of CUL2 

occurs in a fraction of colorectal cancers and this protein may play a central role in 

HIF1alph activation in gastric, colorectal, breast, lung and hepatocellular carcinomas, 

and acute leukemias. 

SH3GL3 was reported in the work of Fang et al (Fang WJ. 2012) that it exhibited 

hypermethylation in its promoter region; this evidence support previous studies that 

SH3GL3 is significantly associated with colorectal cancer. 

 
Table 2 Clique Community List 

 
community 

ID 
involved 
protein 

lung 
cancer 
protein 

 community 
ID 

involved 
protein 

lung 
cancer 
protein 

 community 
ID 

involved 
protein 

lung 
cancer 
protein 

1 
 

UBC No  7 UBC No  14 UBC No 
CD74 Yes  MVP Yes  HLA-DMA Yes 

MIF Yes  PARP4 Yes  HLA-DRB1 Yes 
2 UBC No  8 VEGFA Yes  15 UBC No 

CSTB Yes  PGF Yes  CIT Yes 
CTSH Yes  NRP1 No  RHOC Yes 

3 UBC No  9 UBC No  16 UBC No 
ADAMTS1 Yes  SPINT1 Yes  FABP5 Yes 
VEGFA Yes  ST14 Yes  S100A7 Yes 
CTGF Yes  10 UBC No  17 UBC No 

4 UBC No  BCL2 Yes  LAMP1 Yes 
FGF2 Yes  ITM2B Yes  LAPTM5 Yes 
GPC3 Yes  11 UBC No  18 UBC No 
RPS19 Yes  DNAJB4 Yes  AKAP12 Yes 
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Biological Process Enrichment Analysis and KEGG Pathway Analysis 
There are 1,193 PPIs in observing cluster (cluster number 20); the list of distinct 

proteins was submitted to DAVID software for investigating the enriched biological 

processes of this protein list. From our evidence as table 3 indicates that most of 

biological process that related to cancers involved almost 100% of lung cancer 

proteins.  

 
Table 3  List of enriched biological Process of clique protein community 

Category Term Count % PValue Involved proteins 
GOTERM_
BP_FAT 

GO:0010941~regulation of cell 
death 

70 13.11 6.68E-12 XRCC4, HRAS, TP63, PAWR, TGFB1, TGFB2, 
ACVR1B, PCGF2, CASP3, NOD2, DYNLL1, CASP9, 
CD44, PCBP4, APOE, HMOX1, RHOA, PIK3CA, 
NOS3, FAS, FGF2, API5, TERT, PRKCA, IRAK1, 
PRAME, CYCS, PRKCI, SKP2, FADD, PIM2, ECT2, 
ARHGEF11, TNFRSF10A, TNFRSF10B, BTG2, 
RASGRF1, UNC13B, NMNAT1, MCL1, CLU, CALR, 
CD74, MIF, PEA15, ERCC5, PPP2CB, THBS1, 
NEFL, BMP4, TXNIP, PTPRC, SMAD6, KLF10, 
LGALS1, BIRC6, BIRC5, MALT1, SOD1, TAX1BP1, 
SOD2, ATF5, NRAS, CASP10, DUSP1, BAX, 
PLCG2, ID3, BMP7, PDCD6 

GOTERM_
BP_FAT 

GO:0043067~regulation of 
programmed cell death 

69 12.92 1.57E-11 XRCC4, HRAS, TP63, PAWR, TGFB1, TGFB2, 
ACVR1B, PCGF2, CASP3, NOD2, DYNLL1, CASP9, 
CD44, PCBP4, APOE, HMOX1, RHOA, PIK3CA, 
NOS3, FAS, FGF2, API5, TERT, PRKCA, IRAK1, 
PRAME, CYCS, PRKCI, SKP2, FADD, PIM2, ECT2, 
ARHGEF11, TNFRSF10A, TNFRSF10B, BTG2, 
RASGRF1, UNC13B, NMNAT1, MCL1, CLU, CALR, 
CD74, MIF, PEA15, ERCC5, PPP2CB, THBS1, 
NEFL, TXNIP, PTPRC, SMAD6, KLF10, LGALS1, 
BIRC6, BIRC5, MALT1, SOD1, TAX1BP1, SOD2, 

SDC4 Yes  PABPN1 Yes  FHL1 Yes 
5 UBC No  12 SH3GL1 No     

GSTM1 Yes  DPYSL4 Yes     
GSTM2 Yes  PTPRO Yes     

6 UBC No  SH3GL3 No     
COPS6 No  13 UBC No     

IFI27 Yes  FAS Yes     
SKP2 Yes  PDCD6 Yes     
CUL2 No  HEBP2 Yes     
TCEB1 Yes         
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ATF5, NRAS, CASP10, DUSP1, BAX, PLCG2, ID3, 
BMP7, PDCD6 

GOTERM_
BP_FAT 

GO:0042981~regulation of 
apoptosis 

67 12.54 7.84E-11 XRCC4, HRAS, TP63, PAWR, TGFB1, TGFB2, 
ACVR1B, PCGF2, CASP3, NOD2, DYNLL1, CASP9, 
CD44, PCBP4, APOE, HMOX1, RHOA, PIK3CA, 
NOS3, FAS, API5, TERT, PRKCA, IRAK1, PRAME, 
CYCS, PRKCI, SKP2, FADD, PIM2, ECT2, 
ARHGEF11, TNFRSF10A, TNFRSF10B, BTG2, 
RASGRF1, UNC13B, NMNAT1, MCL1, CLU, CALR, 
CD74, MIF, PEA15, ERCC5, PPP2CB, THBS1, 
NEFL, TXNIP, PTPRC, SMAD6, KLF10, LGALS1, 
BIRC6, BIRC5, MALT1, SOD1, TAX1BP1, SOD2, 
ATF5, NRAS, CASP10, DUSP1, BAX, ID3, BMP7, 
PDCD6 

GOTERM_
BP_FAT 

GO:0043069~negative regulation 
of programmed cell death 

39 7.30 1.27E-09 XRCC4, HRAS, MCL1, CLU, TP63, CD74, MIF, 
PEA15, PCGF2, ERCC5, CASP3, APOE, HMOX1, 
PPP2CB, RHOA, PIK3CA, NOS3, FAS, THBS1, 
NEFL, API5, TERT, IRAK1, PRAME, SMAD6, 
PRKCI, SKP2, BIRC6, MALT1, BIRC5, PIM2, SOD1, 
TAX1BP1, SOD2, ATF5, NRAS, BTG2, BAX, PLCG2 

GOTERM_
BP_FAT 

GO:0060548~negative regulation 
of cell death 

39 7.30 1.37E-09 XRCC4, HRAS, MCL1, CLU, TP63, CD74, MIF, 
PEA15, PCGF2, ERCC5, CASP3, APOE, HMOX1, 
PPP2CB, RHOA, PIK3CA, NOS3, FAS, THBS1, 
NEFL, API5, TERT, IRAK1, PRAME, SMAD6, 
PRKCI, SKP2, BIRC6, MALT1, BIRC5, PIM2, SOD1, 
TAX1BP1, SOD2, ATF5, NRAS, BTG2, BAX, PLCG2 

GOTERM_
BP_FAT 

GO:0043066~negative regulation 
of apoptosis 

38 7.11 3.00E-09 XRCC4, HRAS, MCL1, CLU, TP63, CD74, MIF, 
PEA15, PCGF2, CASP3, ERCC5, APOE, HMOX1, 
PPP2CB, RHOA, PIK3CA, NOS3, FAS, THBS1, 
NEFL, API5, TERT, IRAK1, PRAME, SMAD6, 
PRKCI, SKP2, BIRC6, MALT1, BIRC5, PIM2, SOD1, 
TAX1BP1, SOD2, ATF5, NRAS, BTG2, BAX 

GOTERM_
BP_FAT 

GO:0006916~anti-apoptosis 24 4.49 9.88E-07 IRAK1, MCL1, CLU, PRKCI, SKP2, BIRC6, TP63, 
MALT1, BIRC5, PIM2, SOD1, TAX1BP1, SOD2, 
ATF5, PEA15, APOE, HMOX1, BAX, PIK3CA, 
NOS3, FAS, THBS1, API5, TERT 

GOTERM_
BP_FAT 

GO:0010942~positive regulation 
of cell death 

33 6.17 6.76E-05 TP63, PAWR, TGFB1, TGFB2, ACVR1B, CASP3, 
CD44, CASP9, DYNLL1, APOE, PCBP4, HMOX1, 
FAS, TXNIP, BMP4, PRKCA, PTPRC, KLF10, SKP2, 
FADD, SOD1, ECT2, ARHGEF11, TNFRSF10A, 
CASP10, TNFRSF10B, DUSP1, RASGRF1, BAX, 
ID3, BMP7, UNC13B, PDCD6 

GOTERM_GO:0043065~positive regulation 32 5.99 1.27E-04 TP63, PAWR, TGFB1, TGFB2, ACVR1B, CASP3, 
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BP_FAT of apoptosis CD44, CASP9, DYNLL1, APOE, PCBP4, HMOX1, 
FAS, TXNIP, PRKCA, PTPRC, KLF10, SKP2, FADD, 
SOD1, ECT2, ARHGEF11, TNFRSF10A, CASP10, 
TNFRSF10B, DUSP1, RASGRF1, BAX, ID3, BMP7, 
UNC13B, PDCD6 

GOTERM_
BP_FAT 

GO:0043068~positive regulation 
of programmed cell death 

32 5.99 1.43E-04 TP63, PAWR, TGFB1, TGFB2, ACVR1B, CASP3, 
CD44, CASP9, DYNLL1, APOE, PCBP4, HMOX1, 
FAS, TXNIP, PRKCA, PTPRC, KLF10, SKP2, FADD, 
SOD1, ECT2, ARHGEF11, TNFRSF10A, CASP10, 
TNFRSF10B, DUSP1, RASGRF1, BAX, ID3, BMP7, 
UNC13B, PDCD6 

GOTERM_
BP_FAT 

GO:0008219~cell death 54 10.11 2.43E-07 HRAS, TP63, GJA1, PAWR, PDCD4, TGFB1, 
TGFB2, CASP3, CASP9, DYNLL1, CXCR4, GSN, 
HMOX1, RHOB, FAS, FGF2, API5, YARS, CYCS, 
FADD, IL24, PIM2, ECT2, BCAP31, ARHGEF11, 
TNFRSF10A, TNFRSF10B, RASGRF1, BUB1B, 
CTSD, SIAH2, GADD45B, MCL1, ALDOC, CLU, 
ITGB2, ARF6, PEA15, PEG10, THBS1, LGALS1, 
GARS, BIRC6, BIRC5, SOD1, ITPR1, TAX1BP1, 
SOD2, ATXN1, NRAS, CASP10, BAX, PARP4, 
PDCD6 

GOTERM_
BP_FAT 

GO:0016265~death 54 10.11 2.99E-07 HRAS, TP63, GJA1, PAWR, PDCD4, TGFB1, 
TGFB2, CASP3, CASP9, DYNLL1, CXCR4, GSN, 
HMOX1, RHOB, FAS, FGF2, API5, YARS, CYCS, 
FADD, IL24, PIM2, ECT2, BCAP31, ARHGEF11, 
TNFRSF10A, TNFRSF10B, RASGRF1, BUB1B, 
CTSD, SIAH2, GADD45B, MCL1, ALDOC, CLU, 
ITGB2, ARF6, PEA15, PEG10, THBS1, LGALS1, 
GARS, BIRC6, BIRC5, SOD1, ITPR1, TAX1BP1, 
SOD2, ATXN1, NRAS, CASP10, BAX, PARP4, 
PDCD6 

GOTERM_
BP_FAT 

GO:0006915~apoptosis 46 8.61 1.44E-06 HRAS, MCL1, ALDOC, CLU, GJA1, TP63, ARF6, 
ITGB2, PAWR, PDCD4, PEA15, CASP3, PEG10, 
CASP9, DYNLL1, CXCR4, GSN, RHOB, FAS, 
THBS1, FGF2, API5, YARS, LGALS1, CYCS, 
BIRC6, BIRC5, FADD, IL24, PIM2, SOD1, ECT2, 
TAX1BP1, BCAP31, ARHGEF11, SOD2, 
TNFRSF10A, CASP10, NRAS, TNFRSF10B, 
RASGRF1, BAX, BUB1B, SIAH2, GADD45B, 
PDCD6 

GOTERM_
BP_FAT 

GO:0012501~programmed cell 
death 

46 8.61 2.16E-06 HRAS, MCL1, ALDOC, CLU, GJA1, TP63, ARF6, 
ITGB2, PAWR, PDCD4, PEA15, CASP3, PEG10, 
CASP9, DYNLL1, CXCR4, GSN, RHOB, FAS, 
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THBS1, FGF2, API5, YARS, LGALS1, CYCS, 
BIRC6, BIRC5, FADD, IL24, PIM2, SOD1, ECT2, 
TAX1BP1, BCAP31, ARHGEF11, SOD2, 
TNFRSF10A, CASP10, NRAS, TNFRSF10B, 
RASGRF1, BAX, BUB1B, SIAH2, GADD45B, 
PDCD6 

GOTERM_
BP_FAT 

GO:0060284~regulation of cell 
development 

20 3.74 1.15E-04 BMP4, XRCC4, CDH2, CALR, TTC3, TGFB1, 
TGFB2, THY1, ACTR3, ATF5, CCND2, APOE, BAX, 
NTRK2, RHOA, AGRN, BMP7, FGF2, NEFL, DBN1 
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4.1.2 Identification of proteins interacting to OCP and TSP 
The cause of cancer is closely related to the gain of OCP function or the lost of TSP 

function. The cause of disease is associated with many proteins and there are great 

chances that these proteins are regulated in biological processes or functions. Previous 

researches have suggested that if two proteins involving in the same PPI have highly 

similarity in their biological function, therefore, if a protein is associated to Lung 

cancer forming, then its partners in PPI are also likely connected to the lung cancer. 

From our evidence, we found that some non-lung cancer proteins interact to OCP and 

TSP, therefore, those non lung cancer proteins might have significant role in 

associating in causing disease as well. Table 4 lists some of non-lung cancer proteins 

that are interacting partners of OCP and TSP. 

Interestingly, our result shows that UBC, COPS6 and SH3GL3 interact to set of OCP 

and TSP, this evidence supports these proteins might have importance role in lung 

cancer formation. Besides, it was found that CUL2 is defined as TSP and NRP1 is 

defined as TSP and OCP, this evidence also supports that these two proteins have 

highly possibility to associate in lung cancer as well. 

 
Table 4 Protein Type of Interacting Proteins 

Non-lung 
cancer protein 

Interacting protein Interacting protein type 
OCP (Onco-Protein) 

TSP (Tumor Suppressor Protein) 
UBC VEGFA OCP 

CTGF TSP/OCP 

FGF2 OCP 
GPC3 TSP 
GSTM1 TSP 
TCEB1 TSP 
MVP TSP 

ST14 TSP 
BCL2 TSP/OCP 

DNAJB4 TSP 
FAS TSP 

RHOC OCP 
AKAP12 TSP 

ADAMTS1 VEGFA OCP 
FHL1 AKAP12 TSP 

ITM2B BCL2 TSP/OCP 
CIT RHOC OCP 

COPS6 TCEB1 TSP 
PABPN1 DNAJB4 TSP 

DPYSL4 PTPRO TSP 
PDCD6 FAS TSP 
RPS19 FGF2 OCP 
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SDC4 FGF2 OCP 
GSTM2 GSTM1 TSP 

PARP4 MVP TSP 
PGF NRP1 TSP/OCP 

SH3GL3 PTPRO TSP 
SH3GL1 PTPRO TSP 

SKP2 CUL2 TSP 
SKP2 TCEB1 TSP 

SPINT1 ST14 TSP 
PGF VEGFA OCP 

VEGFA NRP1 TSP/OCP 

 

4.2 MCODE 
There are 383 output clusters from MCODE algorithm, out of 127 clusters satisfy 1.5 

of cluster score, out of 32 clusters satisfy 50% of the involvement of lung cancer 

proteins. Among these 32 clusters, there are only 12 clusters which satisfy 0.005 of p-

value in enriched biological processes predicted by DAVID. 

There are 7 significant clusters out of 12 clusters which have related cancer biological 

processes. Therefore, we focused on those clusters to insight observe proteins 

involved in related cancer biological processes. 

 
4.2.1 MCODE Clustering Network 
In a protein-protein interaction network, proteins are represented as nodes, some 

nodes interact with many more partners than average; these proteins are called hubs 

(Albert R. 2005).  The work of Sun and Zhao (Sun J. 2010) states that cancer-related 

protein tended to have higher degree of connecting to other proteins, and also higher 

in betweeness, shortest-path distance. Their result imply that hub protein or protein 

which has highly interconnection help in identification of cancer candidate protein 

prioritization and verification, biomarker discovery and to reveal insight system 

biological system of cancer protein. 

MCODE algorithm identified the seed of each cluster which the node that densely 

connecting to other nodes. Table 4 lists all seed of result clusters.  

PTPN11 protein (tyrosine phosphatase) encoding SHP2 was reported by that SHP2 is 

a drugable target for the treatments of PTPN11-associated diseases (Xu D. 2013). 

Besides, the work of Tartaqlia et al (Tartaqlia M. 2001) also reports that the mutation 

of PTPN11 cause Noonan syndrome which is an autosomal dominant disorder 

characterized by dysomorphic facial features, proportionate short stature and heart 

disease. 

The work of Giri et al (Giri K. 2014) reported that silencing of PPA1 by the siRNA 

approach significantly inhibited proliferation of ovarian cancer cells.  

RICTOR was studied by Dao et al (Gao D. 2010), this work found that the 

Rictor/Cullin-1 E3 ligase activity is regulated by a signal that relay cascade and the 

error-regulation of this mechanism may contribute the overexpression of SGK1 in 

various human cancers. 
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NOTCH2 was studied by Baumgart et al (Baumgart A. 2014) , their result highlights 

the role of this protein in lung cancer. 

USP8 was studied by (Byun S. 2013), their result show that the inhibitor of USP8 

activity or reduction in USP8 expression can kill NSCLC (non small cell lung cancer) 

cells and their suggest USP8 as a potential therapeutic target for gefitinib-resistant and 

sensitive NSCLC cells. 

 
Table 5 Seed protein in clusters 

 
4.2.2 Biological Process Enrichment Analysis and KEGG Pathway 

Analysis 
Clustering protein-protein interaction networks can be useful for discovering groups 

of interacting proteins that participate in the same biological processes or perform 

together in specific biological functions. The functional annotation of our protein-

protein interaction was given by the DAVID (huang W.da 2009) which accepts batch 

annotation and conducts GO term enrichment analysis. Sets of proteins involved in 

the network were submitted to DAVID for clustering of the annotation terms. With 

such the enriched biological processes related to protein list were obtained. Table 5 

lists the enriched biological process of proteins involved in our significant clusters. 

 
 
 

Cluster 
No. 

Seed protein Cancer Protein Node Density Node Score Ratio Node Score 

1 PTPN11 No 0.219723183 0.523152022 13.5625 

4 HIF1A Yes 0.123371056 0.656240165 17.0127551 
8 PPA1 No 0.59 0.298944013 7.75 
10 KRT6B No 0.530612245 0.188045427 4.875 
12 B2M Yes 0.226666667 0.157379558 4.08 

17 RICTOR No 0.354166667 0.195010073 5.055555556 
21 BAZ1A Yes 0.3075 0.285729044 7.407407407 
22 FLT4 Yes 0.345679012 0.216975493 5.625 
23 USP50 No 0.32 0.1758948 4.56 

25 BAMBI Yes 0.298611111 0.154293684 4 
26 ZNF579 No 0.24691358 0.120006199 3.111111111 
27 UNC13B Yes 0.177514793 0.086404463 2.24 
32 METTL18 No 0.194444444 0.246869894 6.4 

43 NOTCH2 No 0.28125 0.120006199 3.111111111 
46 USP8 No 0.231111111 0.226811715 5.88 
49 IPO8 Yes 0.208888889 0.160722588 4.166666667 
60 CAV2 Yes 0.378698225 0.231440526 6 

63 F13A1 Yes 0.26446281 0.168758717 4.375 
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Table 6 Cluster 1: Protein-Protein Interaction Clustering Networks 

Cluster 1 
Category Term Count % PValue Involved proteins 
GOTERM
_BP_FAT 

GO:0042981~regulation of 
apoptosis 

34 18.99 1.99E-09 Lung Cancer Protein: PRKDC, HSPA1A, HSPE1, 
HSPA5, MYC, RASA1, CFLAR, CEBPB, MSH2, 
CREB1, ACTN1, YWHAE, TP73, TNFRSF10A, 
TNFSF10, HDAC1, JUN, HSPD1 
Predicted Lung Cancer Protein: DPF2, ERBB2, 
NR3C1, DAXX, SART1, RPS3, VDR, PPP2CA, SOS1, 
BAG3, RXRA, VAV1, CUL4A, HIPK2, UBC, PSME3 

GOTERM
_BP_FAT 

GO:0043067~regulation of 
programmed cell death 

34 18.99 2.55E-09 Lung Cancer Protein: PRKDC, HSPA1A, HSPE1, 
HSPA5, MYC, RASA1, CFLAR, CEBPB, MSH2, 
CREB1, ACTN1, YWHAE, TP73, TNFRSF10A, 
TNFSF10, HDAC1, JUN, HSPD1 
Predicted Lung Cancer Protein: DPF2, ERBB2, , 
NR3C1, DAXX, SART1, RPS3, VDR, PPP2CA, SOS1, 
BAG3, RXRA, VAV1, , CUL4A, , HIPK2, UBC, PSME3 

GOTERM
_BP_FAT 

GO:0010941~regulation of 
cell death 

34 18.99 2.80E-09 Lung Cancer Protein: PRKDC, HSPA1A HSPE1, 
HSPA5, MYC, RASA1, CFLAR, CEBPB, MSH2, 
CREB1 ACTN1 YWHAE, TP73, TNFRSF10A, 
TNFSF10, HDAC1 JUN 
Predicted Lung Cancer Protein: DPF2, ERBB2, , 
NR3C1, DAXX, SART1, RPS3, VDR, PPP2CA, SOS1, 
BAG3, RXRA, , VAV1, , CUL4A, , HIPK2, UBC, 
PSME3, HSPD1 

GOTERM
_BP_FAT 

GO:0010628~positive 
regulation of gene 
expression 

33 18.43 1.96E-12 Lung Cancer Protein: ING2, THRB, PPARG, PRKDC 
MYC CEBPA, CEBPB, CREB1 HMGA1, TP73, STAT3 
RB1 YWHAH, HDAC2 HDAC1, JUN DNMT1 
Predicted Lung Cancer Protein: SMARCAD1, TBP, 
SMARCD1, , RUNX2, , RXRA, MTA2, SMAD2, 
TOPORS, ARID1B, DDX5, HDAC4, EP300, SP1, 
HIPK2, UBC, PIAS2 

GOTERM
_BP_FAT 

GO:0008219~cell death 28 15.64 4.30E-07 Lung Cancer Protein: FUS PRKDC TOP1, TSC22D3 
MYC, CFLAR, MSH2 HSPE1 YWHAE TP73, 
TNFRSF10A, TNFSF10 PKM2, JUN HSPD1, 
GADD45A 
Predicted Lung Cancer Protein: DPF2, TBP, DAXX, 
RPS3, SOS1, BAG3, TOPORS, VAV1, EP300, HIPK2, 
UBC, PSME3 

GOTERM
_BP_FAT 

GO:0016265~death 28 15.64 4.93E-07 Lung Cancer Protein: FUS PRKDC TOP1 TSC22D3 
HSPE1 MYC CFLAR, MSH2 YWHAE TP73, 
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TNFRSF10A, TNFSF10 PKM2, JUN HSPD1, 
GADD45A 
Predicted Lung Cancer Protein: DPF2, TBP, DAXX, 
RPS3, SOS1, BAG3, TOPORS, VAV1, EP300, HIPK2, 
UBC, PSME3  

GOTERM
_BP_FAT 

GO:0012501~programmed 
cell death 

26 14.52 2.48E-07 Lung Cancer Protein: PRKDC TOP1, TSC22D3 
HSPE1, MYC, CFLAR, MSH2 YWHAE, TP73, 
TNFRSF10A PKM2, JUN HSPD1, GADD45A 
Predicted Lung Cancer Protein: DPF2, DAXX, RPS3, 
SOS1, BAG3, TOPORS, VAV1, TNFSF10, EP300, 
HIPK2, UBC, PSME3 

GOTERM
_BP_FAT 

GO:0043065~positive 
regulation of apoptosis 

23 12.84 2.99E-08 Lung Cancer Protein: CFLAR, CEBPB PRKDC 
YWHAE, TP73, TNFRSF10A, TNFSF10 JUN, HSPD1, 
MYC 
Predicted Lung Cancer Protein: DPF2, RXRA, 
NR3C1, VAV1, DAXX, SART1, RPS3, VDR, CUL4A, 
PPP2CA, SOS1, HIPK2, UBC 

GOTERM
_BP_FAT 

GO:0043068~positive 
regulation of programmed 
cell death 

23 12.84 3.39E-08 Lung Cancer Protein: CFLAR, CEBPB PRKDC 
YWHAE, TP73 TNFRSF10A TNFSF10 JUN HSPD1 
MYC 
Predicted Lung Cancer Protein: DPF2 , RXRA, 
NR3C1, VAV1, DAXX, SART1, RPS3, ,VDR,  CUL4A, 
PPP2CA, SOS1, HIPK2, UBC 

GOTERM
_BP_FAT 

GO:0010942~positive 
regulation of cell death 

23 12.84 3.68E-08 Lung Cancer Protein: CFLAR, CEBPB PRKDC 
YWHAE, TP73, TNFRSF10A TNFSF10 JUN, HSPD1, 
MYC 
Predicted Lung Cancer Protein: DPF2, RXRA, 
NR3C1, VAV1, DAXX, SART1, RPS3, , VDR, , CUL4A, 
PPP2CA, SOS1, HIPK2, UBC 

GOTERM
_BP_FAT 

GO:0006915~apoptosis 23 12.84 8.68E-06 Lung Cancer Protein: CFLAR, MSH2 YWHAE, TP73 
TNFRSF10A, TNFSF10, TSC22D3 JUN, HSPE1 
HSPD1, MYC, GADD45A 
Predicted Lung Cancer Protein: DPF2, TOPORS, 
VAV1, DAXX, RPS3, EP300, SOS1, BAG3, HIPK2, 
UBC, PSME3  

GOTERM
_BP_FAT 

GO:0006917~induction of 
apoptosis 

18 10.05 7.35E-07 Lung Cancer Protein: CFLAR, CEBPB YWHAE TP73, 
TNFRSF10A TNFSF10 MYC 
Predicted Lung Cancer Protein: DPF2, VAV1, DAXX, 
SART1, RPS3, VDR, CUL4A, PPP2CA, SOS1, HIPK2, 
UBC 

GOTERM
_BP_FAT 

GO:0012502~induction of 
programmed cell death 

18 10.05 7.68E-07 Lung Cancer Protein: CFLAR, CEBPB YWHAE TP73 
TNFRSF10A TNFSF10, MYC 
Predicted Lung Cancer Protein: DPF2, VAV1, DAXX, 
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SART1, RPS3, VDR, CUL4A, PPP2CA, SOS1, HIPK2, 
UBC 

GOTERM
_BP_FAT 

GO:0043066~negative 
regulation of apoptosis 

14 7.82 6.30E-04 Lung Cancer Protein: CFLAR, CEBPB, MSH2, 
ERBB2, HSPA1A, TP73, HDAC1, HSPD1, HSPA5, 
MYC, RASA1 
Predicted Lung Cancer Protein: BAG3, HIPK2, UBC 

GOTERM
_BP_FAT 

GO:0043069~negative 
regulation of programmed 
cell death 

14 7.82 7.17E-04 Lung Cancer Protein: CFLAR, CEBPB, MSH2, 
ERBB2, HSPA1A, TP73, HDAC1, HSPD1, HSPA5, 
MYC, RASA1 
Predicted Lung Cancer Protein: BAG3, HIPK2, UBC  

GOTERM
_BP_FAT 

GO:0060548~negative 
regulation of cell death 

14 7.82 7.36E-04 Lung Cancer Protein: CFLAR, CEBPB, MSH2, 
ERBB2, HSPA1A, TP73, HDAC1, HSPD1, HSPA5, 
MYC, RASA1 
Predicted Lung Cancer Protein: BAG3, HIPK2, UBC 

KEGG_PA
THWAY 

hsa05200:Pathways in 
cancer 

25 13.96 9.06E-08 Lung Cancer Protein: HSP90AB1, GRB2, ERBB2, 
PPARG PIK3R3, MYC, PIK3R2, CEBPA, MSH2 CDK6, 
RB1, STAT3 HDAC2, , HDAC1, JUN, 
Predicted Lung Cancer Protein: SOS1, RARA, NOS2, 
RXRA, CBL, SMAD2, EP300, PIAS4, PLCG1 PIAS2 

KEGG_PA
THWAY 

hsa05223:Non-small cell 
lung cancer 

9 5.027 1.81E-05 Lung Cancer Protein: GRB2, ERBB2, CDK6, RB1, 
PIK3R3, PIK3R2 
Predicted Lung Cancer Protein: PLCG1, SOS1, 
RXRA  

KEGG_PA
THWAY 

hsa05222:Small cell lung 
cancer 

9 5.02 4.40E-04 Lung Cancer Protein: CDK6 RB1, PIK3R3, MYC, 
PIK3R2 
Predicted Lung Cancer Protein: PIAS4, RXRA, , 
PIAS2, NOS2 

KEGG_PA
THWAY 

hsa05215:Prostate cancer 9 5.02 6.51E-04 Lung Cancer Protein: HSP90AB1, GRB2, ERBB2, 
CREB1, RB1, PIK3R3, PIK3R2 
Predicted Lung Cancer Protein: EP300, SOS1 

KEGG_PA
THWAY 

hsa05210:Colorectal 
cancer 

8 4.46 0.002218 Lung Cancer Protein: GRB2, MSH2, JUN, PIK3R3, 
MYC, PIK3R2 
Predicted Lung Cancer Protein: SOS1, SMAD2  

KEGG_PA
THWAY 

hsa05214:Glioma 7 3.91 0.002335 Lung Cancer Protein: GRB2 CDK6, RB1, PIK3R3, 
PIK3R2 
Predicted Lung Cancer Protein: PLCG1, SOS1  

KEGG_PA
THWAY 

hsa05211:Renal cell 
carcinoma 

7 3.91 0.003983 Lung Cancer Protein: GRB2, JUN PIK3R3, PIK3R2 
Predicted Lung Cancer Protein: EP300, SOS1, 
PTPN11 

Cluster 4 
Category Term Count % PValue Involved proteins 
GOTERMGO:0010629~negative regulation 13 19.40 4.18E-06 Lung Cancer Protein: E2F1, SOX2, TP53, 
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_BP_FAT of gene expression UBE2I, ILF3, RBBP7, RPS14, MDM2, 
SMARCA2, NCOR2, SMARCA4 
Predicted Lung Cancer Protein: KDM1A, 
SIN3A 

GOTERM
_BP_FAT 

GO:0010628~positive regulation 
of gene expression 

13 19.40 1.76E-05 Lung Cancer Protein: E2F1,CREBBP, SOX2, 
TP53, ILF3, HIF1A, ILF2, SMARCA2, ING1, 
SMARCA4 
Predicted Lung Cancer Protein: RELA, 
SMARCB1, SMARCC1 

GOTERM
_BP_FAT 

GO:0042127~regulation of cell 
proliferation 

14 20.89 7.77E-05 Lung Cancer Protein: EGFR, ERBB3, SOX2, 
STAT1 HIF1A, MDM2,SMARCA2, ING1 
Predicted Lung Cancer Protein: ERBB4, , 
RELA, TP53, RPS9, CBLB, EIF2AK2 

GOTERM
_BP_FAT 

GO:0008284~positive regulation 
of cell proliferation 

8 11.94 0.0036 Lung Cancer Protein: EGFR, HIF1A, SOX2, 
MDM2, STAT1 
Predicted Lung Cancer Protein: ERBB4, RELA, 
, RPS9 

GOTERM
_BP_FAT 

GO:0008284~positive regulation 
of cell proliferation 

8 11.94 0.0036 Lung Cancer Protein: EGFR, HIF1A, SOX2, 
MDM2, STAT1 
Predicted Lung Cancer Protein: ERBB4, RELA, 
RPS9  

KEGG_PA
THWAY 

hsa05200:Pathways in cancer 12 17.91 5.08E-06 Lung Cancer Protein : E2F1, EGFR, HIF1A, 
HSP90AA1, CREBBP, TP53, MDM2, STAT1, 
CRK 
Predicted Lung Cancer Protein: CBLB, CRKL, 
RELA 

KEGG_PA
THWAY 

hsa05215:Prostate cancer 7 10.44 2.20E-05 Lung Cancer Protein: E2F1, EGFR, 
HSP90AA1, CREBBP, TP53, MDM2 
Predicted Lung Cancer Protein: RELA 

KEGG_PA
THWAY 

hsa04012:ErbB signaling 
pathway 

6 8.95 2.46E-04 Lung Cancer Protein: EGFR, ERBB3, CRK 
Predicted Lung Cancer Protein: CBLB, CRKL, 
ERBB4 

KEGG_PA
THWAY 

hsa05212:Pancreatic cancer 5 7.46 0.0012 Lung Cancer Protein: E2F1, EGFR, TP53, 
STAT1 
Predicted Lung Cancer Protein: RELA 

Cluster 8 
Category Term Count % PValue Involved proteins 

GOTERM
_BP_FAT 

GO:0042981~regulation of 
apoptosis 

29 17.68 4.66E-08 Lung Cancer Protein: HMGB1, TP63, EIF5A, 
SFN, HSPA1B, PTEN, AKT1, MAGED1, 
MAP3K1, TPT1, TERT, WWOX, SKP2, BIRC5, 
ESR2, BIRC2, EEF1E1, TNFAIP3, ABL1 
Predicted Lung Cancer Protein: DEDD, 
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BCAR1, BAG1, ARHGEF2, AARS, ADNP, 
MAPK9, FAF1, , BARD1 RAC1 

GOTERM
_BP_FAT 

GO:0043067~regulation of 
programmed cell death 

29 17.68 5.74E-08 Lung Cancer Protein: HMGB1, TP63, EIF5A, 
SFN, HSPA1B, PTEN, AKT1, MAGED1, 
MAP3K1 TPT1, TERT, WWOX, SKP2, BIRC5, 
ESR2, BIRC2, EEF1E1, TNFAIP3, ABL1 
Predicted Lung Cancer Protein: BARD1 
DEDD, BCAR1, BAG1, , RAC1, ARHGEF2, 
AARS, ADNP, MAPK9, FAF1 

GOTERM
_BP_FAT 

GO:0010941~regulation of cell 
death 

29 17.68 6.21E-08 Lung Cancer Protein: HMGB1, TP63, EIF5A, 
SFN, HSPA1B, PTEN, AKT1, MAGED1, 
MAP3K1, TPT1, TERT, WWOX, SKP2, BIRC5, 
ESR2, BIRC2, EEF1E1, TNFAIP3, ABL1 
Predicted Lung Cancer Protein: DEDD, 
BCAR1, BAG1, ARHGEF2, AARS, ADNP, 
MAPK9, FAF1, BARD1, RAC1 

GOTERM
_BP_FAT 

GO:0043065~positive regulation 
of apoptosis 

17 10.36 2.09E-05 Lung Cancer Protein: SKP2, TP63, EIF5A, 
SFN, PTEN, AKT1, MAGED1, EEF1E1, 
MAP3K1, ABL1, WWOX 
Predicted Lung Cancer Protein: ARHGEF2, 
DEDD, RAC1, MAPK9, FAF1, BARD1 

GOTERM
_BP_FAT 

GO:0043068~positive regulation 
of programmed cell death 

17 10.36 2.28E-05 Lung Cancer Protein: SKP2, TP63, EIF5A, 
SFN, PTEN, AKT1, MAGED1, EEF1E1, 
MAP3K1, ABL1, WWOX 
Predicted Lung Cancer Protein: ARHGEF2, 
DEDD, RAC1, MAPK9, FAF1, BARD1 

GOTERM
_BP_FAT 

GO:0010942~positive regulation 
of cell death 

17 10.36 2.41E-05 Lung Cancer Protein: SKP2, TP63, EIF5A, 
SFN, PTEN, AKT1, MAGED1, EEF1E1, 
MAP3K1, ABL1, WWOX 
Predicted Lung Cancer Protein: ARHGEF2, 
DEDD, RAC1, MAPK9, FAF1, BARD1 

GOTERM
_BP_FAT 

GO:0043066~negative regulation 
of apoptosis 

15 9.14 3.64E-05 Lung Cancer Protein: HMGB1, SKP2, TP63, 
BIRC5, HSPA1B, ESR2, PTEN, AKT1, TPT1, 
TNFAIP3, TERT 
Predicted Lung Cancer Protein: BARD1, 
AARS, ADNP, BAG1 

GOTERM
_BP_FAT 

GO:0043069~negative regulation 
of programmed cell death 

15 9.14 4.24E-05 Lung Cancer Protein: HMGB1, SKP2, TP63, 
BIRC5, HSPA1B, ESR2, PTEN, AKT1, TPT1, 
TNFAIP3, TERT 
Predicted Lung Cancer Protein:  AARS, 
ADNPBAG1, BARD1 

GOTERM
_BP_FAT 

GO:0060548~negative regulation 
of cell death 

15 9.14 4.37E-05 Lung Cancer Protein: HMGB1, SKP2, TP63, 
BIRC5, HSPA1B, ESR2, PTEN, AKT1, TPT1, 
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TNFAIP3, TERT  
Predicted Lung Cancer Protein:  BARD1, 
AARS, ADNP, BAG1 

GOTERM
_BP_FAT 

GO:0008219~cell death 19 11.58 9.35E-04 Lung Cancer Protein: TP63, BIRC5, ITGB2, 
SFN, PTEN, BIRC2, MAGED1, AKT1, MAP3K1, 
CYFIP2 , TNFAIP3 
Predicted Lung Cancer Protein: ARHGEF2, 
DEDD, SMN1, BAG1, PAK2, ATXN10, RAC1, 
FAF1 

GOTERM
_BP_FAT 

GO:0006915~apoptosis 17 10.36 9.76E-04 Lung Cancer Protein: TP63, BIRC5, ITGB2, 
SFN, PTEN, BIRC2, AKT1, MAGED1, MAP3K1, 
CYFIP2, TNFAIP3 
Predicted Lung Cancer Protein: ARHGEF2, 
DEDD, , BAG1, PAK2, RAC1, FAF1 

GOTERM
_BP_FAT 

GO:0016265~death 19 11.58 0.0010 Lung Cancer Protein: TP63, BIRC5, ITGB2, 
SFN, PTEN, BIRC2, , MAGED1, AKT1, 
MAP3K1, CYFIP2, TNFAIP3 
Predicted Lung Cancer Protein: ARHGEF2, 
DEDD, SMN1, BAG1, PAK2, ATXN10, RAC1, 
FAF1 

GOTERM
_BP_FAT 

GO:0012501~programmed cell 
death 

17 10.36 0.0011 Lung Cancer Protein: TP63, BIRC5, ITGB2, 
SFN, PTEN, BIRC2, AKT1, MAGED1, MAP3K1, 
TNFAIP3, CYFIP2 
Predicted Lung Cancer Protein: ARHGEF2, 
DEDD, BAG1, PAK2RAC1, FAF1 

GOTERM
_BP_FAT 

GO:0051301~cell division 11 6.70 0.0015 Lung Cancer Protein: PLK1, BIRC5, CDK4, 
WEE1 
Predicted Lung Cancer Protein: ARHGEF2, 
BCAR1, PPP1CC, CDK2, STAG2, SMC4, CDK3 

KEGG_PA
THWAY 

hsa05212:Pancreatic cancer 8 4.87 1.87E-04 Lung Cancer Protein: AKT1, SMAD4, MAPK9, 
CDK4 
Predicted Lung Cancer Protein: MAP2K1, 
RAC1, MAPK10,  RAD51 

KEGG_PA
THWAY 

hsa04012:ErbB signaling 
pathway 

7 4.26 0.0033 Lung Cancer Protein: AKT1, PAK2, MAP2K1, 
ABL1 
Predicted Lung Cancer Protein: PAK6, 
MAPK9, MAPK10 

Cluster 12 
Category Term Count % PValue Involved proteins 

GOTERM
_BP_FAT 

GO:0006955~immune response 6 85.71 1.96E-06 Lung Cancer Protein: CD8A, TAP2, B2M 
Predicted Lung Cancer Protein: TAP1, HLA-A, 
TAPBP  
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Cluster 17 
Category Term Count % PValue Involved proteins 

GOTERM
_BP_FAT 

GO:0010627~regulation of 
protein kinase cascade 

6 15.00 3.16E-04 Lung Cancer Protein: BST2, GJA1 
Predicted Lung Cancer Protein: MAP3K5, 
GRIN2B, RICTOR, TAB2 

Cluster 22 
Category Term Count % PValue Involved proteins 
GOTERM
_BP_FAT 

GO:0006952~defense response 5 45.45 7.13E-04 Lung Cancer Protein: CD44, CD46, THBS1 
Predicted Lung Cancer Protein: F2, ITGB1 

GOTERM
_BP_FAT 

GO:0042981~regulation of 
apoptosis 

5 45.45 0.0019 Lung Cancer Protein: CD44, TIAM1, THBS1 
Predicted Lung Cancer Protein: F2, PLG 

GOTERM
_BP_FAT 

GO:0043067~regulation of 
programmed cell death 

5 45.45 0.0020 Lung Cancer Protein: CD44, TIAM1, THBS1 
Predicted Lung Cancer Protein: F2, PLG 

GOTERM
_BP_FAT 

GO:0010941~regulation of cell 
death 

5 45.45 0.0020 Lung Cancer Protein: CD44, TIAM1, THBS1 
Predicted Lung Cancer Protein: F2, PLG 

Cluster 23 
Category Term Count % PValue Involved proteins 
GOTERM
_BP_FAT 

GO:0009967~positive regulation 
of signal transduction 

5 20 0.001188 Lung Cancer Protein: ENG, PEBP1 
Predicted Lung Cancer Protein: ACVR2B, 
MYD88,  TRAF6 

 
4.2.3 Protein-Protein Interaction Network in cancer related biological 

processes and pathways 
Figure 12 and 13 indicates that there is a group of proteins that involved in the process 

of regulation of apoptosis and regulation of programmed cell death, we found non 

lung cancer proteins i.e. UBC, NR3CR1, DAXX, CUL4A, and BAG3 have high 

degree of the link to cancer proteins in both sub-network. This evidence indicates that 

those proteins may be significant proteins induced lung cancer. DAXX was reported 

in UniProt that it involves in programmed cell death, and also our evidence indicates 

that this type of protein interacts to five lung cancer proteins; TP73, CREB1, CFLAR, 

CEBPB and HDAC1. It is highly possible that DAXX involves in lung cancer 

forming. 

Interestingly, UBC (Ubiquitin) has highest dense of connection to lung cancer 

proteins,  UBC was recorded in uniProt that it involves in DNA damage response, by 

inducing the cell cycle regulator phosphoprotein p53 in response to the detection of 

DNA damage and resulting in the stopping or reduction of cell cycle rate. NR3C1 

(Nuclear receptor subfamily 3 group C member 1) is another protein with high 

number of lung cancer protein found in our evidence as figure 10 and 11. This protein 

encodes a receptor for glucocorticoids that can act as both a transcriptionfactor and as 

a regulator of other transcription factors. It can also found in heteromeric cytoplasmic 

complexes along with heat shock factors and immunophilins. 
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Figure 12 a group of protein-protein interactions involved in biological process of 
regulation of apoptosis  
(diamond element indicate lung cancer protein, circle element indicate non lung cancer protein) 
 

 
Figure 13 a group of protein-protein interaction involved in biological process of 
programmed cell death  

(diamond element indicate lung cancer protein, circle element indicate non lung cancer protein) 
 

EP300, SP1 and SMAD2 proteins are found highly connected link to lung cancer 

proteins as figure 14. There are many previous evidences supported our result that 

SMAD family are components of the transforming growth TBF-ɓ signaling pathway 

that is deregulated in a variety of cancer types (Xu J. 2000; Singh P. 2011; Fleming 
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NI. 2013). The work of Hsu et al (Hsu TI. 2012) studied the role of SP1 expression in 

lung cancer, their work shows that the SP1 protein was highly increased and required 

for lung tumor growth in transgenic mice bearing Kras-induced lung tumors under to 

control of doxycycline and also this protein was highly up-regulated in lung 

ademoncarcinoma cells with low invasiveness and in patients with stage I lung 

cancer. Furthermore, the work of Szalad et al (Szalad A. 2009) investigated function 

of SP1 in tumor invasiveness under normoxic and hypoxic conditions. They found 

that SP1 binds to the ADAM17 promoter and it regulates ADAM17 protein 

expression under hypoxia, regulates glioma invasiveness. 

Besides, the work of Roelfsema et al (Roelfsema JH. 2005) studied the effect of 

EP300 mutation, they found that the mutation of EP300 cause congenital disorder. 

Furthermore, result from the work of Gayther et al (Gayther SA. 2000) shows that 

EP300 is mutated in epithelial cancers and provide the first evidence that it behaves as 

a classical tumor-suppressor gene. 

 

 
Figure 14 a group of protein-protein interaction involved in biological process of positive 
regulation of gene expression  

(diamond element indicate lung cancer protein, circle element indicate non lung cancer protein) 
 
TNFSF10 and BAG3 protein have two degree of cancer linkage as figure 15; 

TNFSF10 protein is reported by NCBI that induces apoptosis in transformed and 

tumor cells, but not appear to kill normal cells although it is expressed at a significant 

level in most normal tissues.  Also it is reported from the work of Kuribayashi et al 

(Kuribayashi K. 2008) that it is a a53 target gene that mediates p53-dependent cell 

death. Beside, Rosati et al (Rosati A. 2011)  studied various functions of BAG3 

protein in major cell pathway, they reported that this protein involved in apoptosis and 

leukemias. 

 



 

38 
 

 
Figure 15 a group of protein-protein interaction involved programmed cell death 

(diamond element indicate lung cancer protein, circle element indicate non lung cancer protein) 
 

From our evidence as the figure 16, it is found that CUL4A and VDR involve in 

positive regulation of apoptotic process which is any process that activates or 

increases the frequency, rate or extent of cell death by apoptotic process. CUL4A was 

reported in the work of Puneet and Alo (Puneet S 2014) that it is attacked by several 

viral proteins and it overexpresses in a common feature of many human cancers. This 

research work presents that CUL4A is an attractive target for drug discovery efforts, 

especially, for further studies of a drug target for various types of cancer disease. 

Furthermore, the work of Ren et al (Ren S. 2012) which is about the relation of 

CUL4A and thalidomide treatment in prostate cancer also supports the work that 

mentioned above. They reported that sensitivity to thalidomide is positively correlated 

with the expression of CUL4A, the ectopic expression of CUL4A greatly increased 

sensitivity to thalidomide, while its down-regulation implies resistance to this drug. 

Data suggest that Calcidiol or 25(OH)D interacts with VDR (vitamin D receptor) to 

decrease proliferation and increase apoptotic, the work of Hendrickson et al 

(Hendrickson WK. 2011)  reported that high VDR protein expression in prostate 

tumors has significant relation with a reduced risk of lethal cancer, this evidence 

implies that vitamin D has crucial role in cancer progression. 
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Figure 16 a group of protein-protein interaction involved in positive regulation of 
apoptotic process 

(diamond element indicate lung cancer protein, circle element indicate non lung cancer protein) 
 
Figure 17 shows the interaction of proteins that involved in KEGG cancer pathway.  

CBL (E3 ubiquitin-protein ligase CBL) is reported by Paolino et al (Paolino M. 2014) 

that CBL-b and TAM receptor regulates cancer metastasis via natural killer cells. 

PIAS2 is a protein inhibitor of activated STAT2, STAT2 increase appears to be an 

early detectable cellular event in cervical cancer progression (Liang Z. 2012). 

Data suggests that RARA (Retinoic acid receptor alpha) is a marker of tanoxifen 

resistance in breast cancer, and it may be a target and predictive factor for oestrogen 

receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen 

(Hentrik J. 2013). 

 

 
Figure 17 a group of protein-protein interaction involved in KEGG Pathways in Cancer 
(diamond element indicates lung cancer protein, circle element indicates non lung cancer protein) 
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4.2.4 Identification of proteins interacting to OCP and TSP 
The cause of cancer is closely related to the gain of OCP function or the lost of TSP 

function. The cause of disease is associated with many proteins and there are great 

chances that these proteins are regulated in biological processes or functions. Previous 

researches have suggested that if two proteins involving in the same PPI have highly 

similarity in their biological function, therefore, if a protein is associated to Lung 

cancer forming, then its partners in PPI are also likely connected to the lung cancer.  

From our evidence, we found that some proteins interact to OCP and TSP as table 7. 

 
Table 7 A list of protein interacting to OCP, TSP 

Protein Interacting protein Interacting protein type 
AP2A1 ABL1 TSP/OCP 
AP2B1 ABL1 TSP/OCP 

BCAR1(TSP) ABL1 TSP/OCP 

CBL(OCP) ABL1 TSP/OCP 
CBLB(OCP) ABL1 TSP/OCP 
CREB1(TSP) ABL1 TSP/OCP 

CRK(TSP/OCP) ABL1 TSP/OCP 

CRKL(OCP) ABL1 TSP/OCP 
EGFR(TSP/OCP) ABL1 TSP/OCP 
ERBB2(TSP/OCP) ABL1 TSP/OCP 
ERBB3(TSP/OCP) ABL1 TSP/OCP 

ERBB4(OCP) ABL1 TSP/OCP 

GRB2 ABL1 TSP/OCP 
HSP90AA1(OCP) ABL1 TSP/OCP 

HSPD1 ABL1 TSP/OCP 
INPPL1 ABL1 TSP/OCP 

MAPT ABL1 TSP/OCP 
MDM2(TSP/OCP) ABL1 TSP/OCP 

MUC1 ABL1 TSP/OCP 
NCK1 ABL1 TSP/OCP 

PIK3R2 ABL1 TSP/OCP 
PLCG1 ABL1 TSP/OCP 
PRKDC ABL1 TSP/OCP 
RAD51 ABL1 TSP/OCP 

RB1(TSP/OCP) ABL1 TSP/OCP 
TP53(TSP/OCP) ABL1 TSP/OCP 
TP73(TSP/OCP) ABL1 TSP/OCP 

UBC ABL1 TSP/OCP 
VAV1 ABL1 TSP/OCP 

ACTA1 DHX9 TSP 
ACTL6A EWSR1 OCP 
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ACTL6A SMARCA2 TSP 
ACTL6A SMARCA4 TSP 

ACTL6A SMARCE1 TSP 
ACTL6A TP53 TSP/OCP 
ACTL6A TRRAP TSP 
ACVR2B PEG10 OCP 

ACVR2B SMAD2 TSP 
ADNP SMARCA4 TSP 

AIP(TSP) HSP90AA1 OCP 
STIP1 AIP TSP 

GAG ANXA2 OCP 
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4.3 Clustering Performance Comparison among two Algorithms 

 
4.3.1 Identification of protein complexes 
A major problem in dealing with protein-protein interaction network is the high false 

positive rate in high throughput experiments, false positive in a network are error 

interaction, while false negatives are missing interactions. To evaluate the reliability 

of our protein-protein interaction network, we adopted known complexes from MIPS 

database (Mewes HW. 2006). The compassion of the overlaps of our protein-protein 

interaction with the MIPS protein complexes data set was evaluated. Table 8 shows 

results for the overlaps of our protein-protein interaction networks with the MIPS 

protein complexes data set. The eighteen clique communities of K-Means protein 

complexes and twelve of MCODE protein complexes were compared with MIPSô 

1818 protein complexes records and their maximum JI values were computed. Among 

the protein communities clustered by K-Means, there are 14 out of 18 protein 

complexes (77%) have non-zero JI values but not fully covered. Four communities do 

not correspond to any real protein complexes. For the protein complexes identified by 

MCODE, there are 10 out of 12 protein complexes (83%) have non-zero JI values but 

not fully covered. Only two protein complexes do not correspond to any real protein 

complexes from MIPS. Protein complexes identified by K-Means ranges from 0.03 to 

0.71, while protein complexes identified by MCODE ranges from 0.34 to 0.75. These 

results indicated that the clusters predicted by MCODE have high coverage ratio than 

K-Means. 

 
Table 8 The results of JI value for protein complexes 

Method JI (%) 

K-Means 3.12-71.4% 

MCODE 34.50-75.5% 

 
4.3.2 Identification of predicted novel lung cancer associated protein 
From our experiment, K-Means is able to extract only one big cluster of proteins 

(1,056 proteins) which has involvement of lung cancer protein more than 50%. This 

cluster involves 93% of lung cancer proteins, while MCODE is able to extract seven 

differently significant clusters in same condition. 

In term of identifying novel lung cancer associated protein, K-Means identified five 

predicted lung cancer associated protein in total (UBC, COPS6, CUL2, NRP1, and 

SH3GL3), however, there were nine proteins are identified as seed node (PTN11, 

PPA1, KRT6B, RICTOR, USP50, ZNF579, METTL18, NOTCH2, and USP8) and 

many proteins are predicted by MCODE as novel lung cancer associated protein that 

involving in cancer biological processes or cancer KEGG pathways.  
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CHAPTER 5 

CONCLUSION 
 

In this study, we identified the novel lung cancer associated proteins based on the 

concept of network clustering approach to discover protein interaction dense regions 

(network motif). The proteins which located in the same motif as lung cancer proteins 

have a high probability in forming lung cancer. We first adopted K-Means clustering 

approach to cluster a group of protein-protein interaction into sub-clusters, and then 

clique percolation clustering method (CPM) is adopted to discover ñsignificant 

network motifò of significant protein cluster resulted by K-Means. Secondly, the 

Molecular Complex Detection approach (MCODE) is also adopted in this work to be 

a candidate of the first algorithm in term of clustering efficiency. The same input data 

set as the first algorithm is submitted into MCODE algorithm to cluster protein-

protein interaction network into sub-clusters. Then analyzing biological processes and 

KEGG pathways of proteins involved in same cluster was investigated. Besides, 

cancer protein types; tumor suppressor protein (TSP) and onco-protein (OCP) are also 

observed. Finally, the comparison of discovering accurate ñprotein complexesò 

among two different approaches is investigated by referring to known protein 

complexes from MIPS.  

Our results indicated that associated proteins findings involved in crucial processes in 

cancer formation i.e. programmed cell death, apoptosis. Basically, there are two 

limitations of our methodology i) the cancer-associated protein prediction is limited 

by the quality of gene ontology and pathway information, and ii) limited by the 

number of known lung cancer proteins. This work can be the essential first step on 

discovering lung cancer associated proteins based on clustering analysis.  

Further study will make more experiments in using different clustering algorithm to 

overcome trapping the result in increasing accuracy and precision of the prediction of 

lung cancer associated protein. 
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